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Problem 1

Problem. Set up and evaluate the integral that gives the volume of the solid formed

by revolving the region about the z-axis.

Solution. The radius is R(z) = —z + 1, so the volume is

Problem 2

Problem. Set up and evaluate the integral that gives the volume of the solid formed

by revolving the region about the x-axis.

Solution. The radius is R(x) = 4 — x2, so the volume is
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Problem 3

Problem. Set up and evaluate the integral that gives the volume of the solid formed

by revolving the region about the z-axis.

Solution. The radius is R(x) = /x, so the volume is

vz/147r<¢5)2 da

Problem 7

Problem. Set up and evaluate the integral that gives the volume of the solid formed
by revolving the region about the y-axis.

Solution. The function is y = x2. The radius is measured horizontally, so we must

solve for x: x = ,/y. Then the radius is R(y) = ,/y. The volume is

v=/04w<m2 dy

Problem 8

Problem. Set up and evaluate the integral that gives the volume of the solid formed

by revolving the region about the y-axis.



Solution. The function is y = v/ 16 — x2. The radius is measured horizontally, so we
must solve for z: z = /16 — y2. Then the radius is R(y) = 1/16 — y?. The volume

is

v:/4 (VI6— )2 dy
T 16

—W(64—%)
N 3

1287

3

Problem 11(a)

Problem. Find the volume of the solid generated by revolving the region bounded by
the graphs of the equations

about the z-axis.

Solution. The radius is measured vertically (perpendicular to the z-axis), so it is

R(z) = v/z. The volume is

3

V= n(Vz)dx

0



Problem 11(c)

Problem. Find the volume of the solid generated by revolving the region bounded by
the graphs of the equations

about the line z = 3.

Solution. The radius is measured horizontally (perpendicular to the line z = 3), so it
is R(y) = 3 — y%. The extremities in the y direction are 0 and /3.
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The volume is
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Problem 23

Problem. Find the volume of the solid generated by revolving the region bounded by
the graphs of the equations
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about the z-axis.

Solution. The graph is
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. The volume is

The radius is R(z) =
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Problem 25

Problem. Find the volume of the solid generated by revolving the region bounded by
the graphs of the equations
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The radius is R(z) = —. The volume is
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Problem 33

Problem. Find the volume of the solid generated by revolving the region bounded by
the graphs of the equations

y =sinzx,
y=Vu,
xz =0,
=T

about the z-axis.

Solution. The radius is R(z) = sinx. The volume is
Vz/ 7 (sinz)® da
0
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Oops. We have not yet learned how to integrate sin?z. The key is to use the identity
cos2x =1 — 2sin? z.

Solve for sin® z to get

1
sin x = 5(1 — cos 2x).

Now we can find the volume.

(1 — cos2x) dx
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Problem 35

Problem. Find the volume of the solid generated by revolving the region bounded by
the graphs of the equations
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about the z-axis.

Solution. The radius is R(x) = e*~!. The volume is
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Problem 65

Problem. Find the volumes of the solids generated if the upper half of the ellipse
922 + 25y = 225 is revolved about (a) the z-axis to form a prolate spheroid, and (b)
the y-axis to form an oblate spheroid.

Solution. The graph is
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and the volume is

and the volume is
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