Monday, September 28, 2015

Page 452

Problem 1

Problem. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the x-axis.

Solution. The radius is $R(x)=-x+1$, so the volume is

$$
\begin{aligned}
V & =\int_{0}^{1} \pi(-x+1)^{2} d x \\
& =\pi \int_{0}^{1}\left(x^{2}-2 x+1\right) d x \\
& =\pi\left[\frac{1}{3} x^{3}-x^{2}+x\right]_{0}^{1} \\
& =\pi\left(\frac{1}{3}-\frac{1}{2}+1\right) \\
& =\frac{5 \pi}{6}
\end{aligned}
$$

Problem 2

Problem. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the x-axis.

Solution. The radius is $R(x)=4-x^{2}$, so the volume is

$$
\begin{aligned}
V & =\int_{0}^{2} \pi\left(4-x^{2}\right)^{2} d x \\
& =\pi \int_{0}^{2}\left(16-8 x^{2}+x^{4}\right) d x \\
& =\pi\left[16 x-\frac{8}{3} x^{3}+\frac{1}{5} x^{5}\right]_{0}^{2} \\
& =\pi\left(32-\frac{64}{3}+\frac{32}{5}\right) \\
& =\frac{256 \pi}{15}
\end{aligned}
$$

Problem 3

Problem. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the x-axis.

Solution. The radius is $R(x)=\sqrt{x}$, so the volume is

$$
\begin{aligned}
V & =\int_{1}^{4} \pi(\sqrt{x})^{2} d x \\
& =\pi \int_{1}^{4} x d x \\
& =\pi\left[\frac{1}{2} x^{2}\right]_{1}^{4} \\
& =\pi\left(8-\frac{1}{2}\right) \\
& =\frac{15 \pi}{2} .
\end{aligned}
$$

Problem 7

Problem. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the y-axis.

Solution. The function is $y=x^{2}$. The radius is measured horizontally, so we must solve for $x: x=\sqrt{y}$. Then the radius is $R(y)=\sqrt{y}$. The volume is

$$
\begin{aligned}
V & =\int_{0}^{4} \pi(\sqrt{y})^{2} d y \\
& =\pi \int_{0}^{4} y d y \\
& =\pi\left[\frac{1}{2} y^{2}\right]_{0}^{4} \\
& =8 \pi .
\end{aligned}
$$

Problem 8

Problem. Set up and evaluate the integral that gives the volume of the solid formed by revolving the region about the y-axis.

Solution. The function is $y=\sqrt{16-x^{2}}$. The radius is measured horizontally, so we must solve for $x: x=\sqrt{16-y^{2}}$. Then the radius is $R(y)=\sqrt{16-y^{2}}$. The volume is

$$
\begin{aligned}
V & =\int_{0}^{4} \pi\left(\sqrt{16-y^{2}}\right)^{2} d y \\
& =\pi \int_{0}^{4}\left(16-y^{2}\right) d y \\
& =\pi\left[16 y-\frac{1}{3} y^{3}\right]_{0}^{4} \\
& =\pi\left(64-\frac{64}{3}\right) \\
& =\frac{128 \pi}{3}
\end{aligned}
$$

Problem 11(a)

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& y=\sqrt{x} \\
& y=0 \\
& x=3
\end{aligned}
$$

about the x-axis.
Solution. The radius is measured vertically (perpendicular to the x-axis), so it is $R(x)=\sqrt{x}$. The volume is

$$
\begin{aligned}
V & =\int_{0}^{3} \pi(\sqrt{x})^{2} d x \\
& =\pi \int_{0}^{3} x d x \\
& =\pi\left[\frac{1}{2} x^{2}\right]_{0}^{3} \\
& =\frac{9 \pi}{2}
\end{aligned}
$$

Problem 11(c)

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& y=\sqrt{x}, \\
& y=0, \\
& x=3
\end{aligned}
$$

about the line $x=3$.
Solution. The radius is measured horizontally (perpendicular to the line $x=3$), so it is $R(y)=3-y^{2}$. The extremities in the y direction are 0 and $\sqrt{3}$.

The volume is

$$
\begin{aligned}
V & =\int_{0}^{\sqrt{3}} \pi\left(3-y^{2}\right)^{2} d y \\
& =\pi \int_{0}^{\sqrt{3}}\left(9-6 y^{2}+y^{4}\right) d y \\
& =\pi\left[9 y-2 y^{3}+\frac{1}{5} y^{5}\right]_{0}^{\sqrt{3}} \\
& =\pi\left(9 \sqrt{3}-6 \sqrt{3}+\frac{9}{5} \sqrt{3}\right) \\
& =\frac{24 \sqrt{3} \pi}{5}
\end{aligned}
$$

Problem 23

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& y=\frac{1}{\sqrt{x+1}}, \\
& y=0, \\
& x=0, \\
& x=4
\end{aligned}
$$

about the x-axis.
Solution. The graph is

The radius is $R(x)=\frac{1}{\sqrt{x+1}}$. The volume is

$$
\begin{aligned}
V & =\int_{0}^{4} \pi\left(\frac{1}{\sqrt{x+1}}\right)^{2} d x \\
& =\pi \int_{0}^{4} \frac{1}{x+1} d x \\
& =\pi[\ln |x+1|]_{0}^{4} \\
& =\pi(\ln 5-\ln 1) \\
& =\pi \ln 5 .
\end{aligned}
$$

Problem 25

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& y=\frac{1}{x}, \\
& y=0, \\
& x=1, \\
& x=3
\end{aligned}
$$

about the x-axis.
Solution. The graph is

The radius is $R(x)=\frac{1}{x}$. The volume is

$$
\begin{aligned}
V & =\int_{1}^{3} \pi\left(\frac{1}{x}\right)^{2} d x \\
& =\pi \int_{1}^{3} \frac{1}{x^{2}} d x \\
& =\pi\left[-\frac{1}{x}\right]_{1}^{3} \\
& =\pi\left(-\frac{1}{3}-(-1)\right) \\
& =\frac{2 \pi}{3} .
\end{aligned}
$$

Problem 33

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& y=\sin x, \\
& y=0, \\
& x=0, \\
& x=\pi
\end{aligned}
$$

about the x-axis.
Solution. The radius is $R(x)=\sin x$. The volume is

$$
\begin{aligned}
V & =\int_{0}^{\pi} \pi(\sin x)^{2} d x \\
& =\pi \int_{0}^{\pi} \sin ^{2} x d x
\end{aligned}
$$

Oops. We have not yet learned how to integrate $\sin ^{2} x$. The key is to use the identity

$$
\cos 2 x=1-2 \sin ^{2} x
$$

Solve for $\sin ^{2} x$ to get

$$
\sin ^{2} x=\frac{1}{2}(1-\cos 2 x) .
$$

Now we can find the volume.

$$
\begin{aligned}
V & =\int_{0}^{\pi} \frac{1}{2}(1-\cos 2 x) d x \\
& =\frac{\pi}{2} \int_{0}^{\pi}(1-\cos 2 x) d x \\
& =\frac{\pi}{2}\left[x-\frac{1}{2} \sin 2 x\right]_{0}^{\pi} \\
& =\frac{\pi}{2}\left(\left(\pi-\frac{1}{2} \sin 2 \pi\right)-\left(0-\frac{1}{2} \sin 0\right)\right) \\
& =\frac{\pi^{2}}{2}
\end{aligned}
$$

Problem 35

Problem. Find the volume of the solid generated by revolving the region bounded by the graphs of the equations

$$
\begin{aligned}
& y=e^{x-1}, \\
& y=0, \\
& x=1, \\
& x=2
\end{aligned}
$$

about the x-axis.
Solution. The radius is $R(x)=e^{x-1}$. The volume is

$$
\begin{aligned}
V & =\int_{0}^{2} \pi\left(e^{x-1}\right)^{2} d x \\
& =\pi \int_{0}^{2} e^{2 x-2} d x \\
& =\pi\left[\frac{1}{2} e^{2 x-2}\right]_{0}^{2} \\
& =\pi\left(\frac{1}{2} e^{2}-\frac{1}{2} e^{-2}\right) \\
& =\frac{\pi}{2}\left(e^{2}-e^{-2}\right) .
\end{aligned}
$$

Problem 65

Problem. Find the volumes of the solids generated if the upper half of the ellipse $9 x^{2}+25 y^{2}=225$ is revolved about (a) the x-axis to form a prolate spheroid, and (b) the y-axis to form an oblate spheroid.

Solution. The graph is

(a) If we rotate about the x-axis, then the radius is

$$
R(y)=3 \sqrt{1-\frac{x^{2}}{25}}
$$

and the volume is

$$
\begin{aligned}
V & =\int_{-5}^{5} \pi\left(3 \sqrt{1-\frac{x^{2}}{25}}\right)^{2} d x \\
& =9 \pi \int_{-5}^{5}\left(1-\frac{x^{2}}{25}\right) d x \\
& =9 \pi\left[y-\frac{1}{75} x^{3}\right]_{-5}^{5} \\
& =9 \pi\left(\left(5-\frac{125}{75}\right)-\left((-5)+\frac{125}{75}\right)\right) \\
& =60 \pi
\end{aligned}
$$

(b) If we rotate about the y-axis, then the radius is

$$
R(x)=5 \sqrt{1-\frac{y^{2}}{9}}
$$

and the volume is

$$
\begin{aligned}
V & =\int_{-3}^{3} \pi\left(5 \sqrt{1-\frac{y^{2}}{9}}\right)^{2} d y \\
& =25 \pi \int_{-3}^{3}\left(1-\frac{y^{2}}{9}\right) d y \\
& =25 \pi\left[x-\frac{1}{27} y^{3}\right]_{-3}^{3} \\
& =25 \pi((3-1)-((-3)+1)) \\
& =100 \pi
\end{aligned}
$$

